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Abstract

A study is carried out on nonlinear multimodal galloping of suspended cables. A consistent model of a curved cable-

beam, geometrically nonlinear and able to torque, recently formulated by the authors, is used. The model accounts for

quasi-steady aerodynamic forces, including the effect of static swing of the cable and dynamic twist of the cross-section.

Complementary solution methods are employed, namely, finite-difference and Galerkin spatial discretization, followed by

numerical time-integration, or Galerkin spatial discretization in conjunction with Multiple Scale perturbation analysis.

The different techniques are applied to a cable close to the first cross-over point, at which a number of internal resonances

exist. Branches of periodic solutions and their stability are evaluated as functions of wind velocity. The existence of

branches of quasi-periodic solutions, originating from narrow unstable intervals and propagating elsewhere, is also proved.

Qualitative and quantitative results furnished by the different investigation tools are compared among them, and the

importance of the various components of motion, accounted or neglected in the reduced models, is discussed.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The aerodynamic instability in the quasi-steady regime (called galloping in technical language) is a classic
phenomenon of aerodynamic instability of slender structures having non-circular cross-sections. Typical
structural systems susceptible to galloping are suspended cables subjected to icing conditions, which suffer
instability even at a moderate wind velocity. Galloping manifests itself by oscillations of great amplitude that
may become stable on limit cycles or divergent over time, according to the nonlinear characteristics of the
system.

In the technical literature the phenomenon is usually described by one-degree-of-freedom models
(mono-modal galloping), which can be derived from a sectional model (e.g. Ref. [1]) or deduced by
discretizing a continuous model (e.g. Ref. [2]). In these cases one assumes that the ignored modes are stable
and provide a marginal contribution to the motion. However, when the natural frequencies of the mechanical
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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model are in internal resonance conditions (1:1, 1:2, etc.), more modes, stable or unstable, can be involved in
the motion, thus giving rise to multimodal galloping conditions.

Concerning aerodynamics, in the framework of the quasi-steady theory, it is well known that forces exerted
by a fluid on non-circular rigid cylinders depend on the body exposure with respect to the fluid direction.
When elastic beams are considered, it is usual to calculate the aerodynamic forces by referring to the initial
attitude of the section; the instantaneous rotation is taken into account only to determine, in an approximate
way, the fluid-to-structure relative velocity. This approach is used for models of perfectly flexible strings too,
in which rotations are generally considered not relevant to the structural behavior. On the contrary, for sagged
suspended cables, the problem appears more complicated. Because of the great structural flexibility, the steady
component of aerodynamic forces leads to significant variations in the equilibrium configuration of suspended
cables and, then, in their flow attitude. Therefore, besides the dynamic rotation, a static swing has to be
considered as a function of the mean wind velocity.

The aeroelastic instability of suspended cables has been widely discussed in the literature, with rare attempts
of including a twist angle in the treatment, in any case neglecting the intrinsic coupling with the flexure.
Recently, the authors have formulated a consistent linear model of cable-beam [3], which takes into account
the initial curvature together with flexural and torsional stiffness, and both static and dynamic torsion.
Afterwards, they have reformulated the model in the nonlinear field [4,5], obtaining equations identical
(at the main order) to those of a flexible suspended cable (e.g. Ref. [6]), but with the addition of a fourth
equation, that can be interpreted as the rotational equilibrium in the tangential direction of a planar circular
arch (e.g. Ref. [7]).

In the present paper, use is made of the nonlinear model of cable-beam proposed by the authors, to
investigate the nonlinear galloping behavior of a suspended cable, under internal resonance conditions,
devoting attention to the comparison between analytical and numerical approaches. A cable close to the first
cross-over point is considered, for which the first symmetric in-plane mode is in internal resonance of 1:1 type
with the first anti-symmetric in-plane and out-of-plane modes, and of 2:1 type with the first symmetric out-of-
plane mode [8]. The problem is tackled in three different ways. First, (a) the nonlinear integro-partial-
differential equations are spatially discretized by the finite-difference method and numerically integrated in
time. Then a standard Galerkin method is applied to obtain a few-dof discrete model, whose solutions are
drawn both (b) numerically, through direct integrations of equations, and (c) analytically, by using the
Multiple-Scale perturbation Method. An indepth analysis is performed on a case study, for which analytical
and numerical solutions are compared. Finally, the stability of nonlinear branches is investigated, and the
importance of analytical solutions in an understanding of the phenomenon is highlighted.

2. A nonlinear model of curved cable-beam

The cable is modeled as a body made of a flexible centerline and rigid cross-sections, restrained to remain
orthogonal to the axis (shear-undeformable beam). An ice accretion is considered, assumed to be uniform
along the cable. Under the gravity force b0, which includes own and ice weights, the cable hangs in the vertical
plane and takes on the C0 configuration (Fig. 1a). A wind flow is then considered, of mean velocity U ¼ Uaz,
blowing normal to the cable plane, producing aerodynamic forces which can be (approximately) taken to be
uniform along the centerline, if lightly sagged cables are considered. When the static part of these forces is
vectorially summed with the gravity, a uniform force field b̄ is obtained, parallel to an inclined plane. The force
induces a rotation jðUÞ of the cable as a rigid body, referred in the following as the static swing of the cable
(Fig. 1b). The inclined planar configuration is taken as a reference C̄ configuration, and dynamic
displacements are measured from it. When the dynamic part of the aerodynamic forces is considered, due to
the occurrence of the inertia forces, the cable loses its planar configuration.

The incremental equilibrium equations around the reference pre-stressed state have been derived in Refs.
[4,5]. By using a linear elastic constitutive law and accounting for damping and inertial effects, the complete
equations of motion have been obtained. They have successively been strongly simplified by estimating the
order of magnitude of all their terms, under the hypotheses of a small sag-to-span ratio, high slenderness,
compact section and small transversal-to-longitudinal and transversal-to-torsional wave velocity ratios. The
latter assumption has permitted to neglect tangential and torsional forces and couples, both of inertial and
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Fig. 1. (a) Initial C0 and reference C̄ configurations (b0 ¼ self-weight; b̄ ¼ s.w.þ wind steady forces); (b) aerodynamic forces on the

transversal section (V ¼ U� _u ¼ relative wind velocity; g ¼ angle of attack; bd ; bl ¼ drag and lift forces).
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damping nature. A nonlinear curved cable-beam model has thus been deduced:
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where the integrals arise from the static condensation of the tangential displacements. In Eqs. (1) vðs; tÞ;wðs; tÞ
are the in-plane and out-of-plane translational displacements measured from the reference rotated
configuration C̄; Wðs; tÞ is the dynamic twist angle; T̄ and k̄ are the stress and curvature in the reference
configuration, assumed to be constant along the cable; ‘ and m are the cable length and mass per-unit-
length; cv and cw are the structural damping coefficients; EA, GJ and EI are the axial, torsional and flexural
stiffnesses; the dots and dashes denote differentiation with respect to the time t and the curvilinear abscissa s,
respectively; and b2 and b3 are aerodynamic, time-dependent, external forces. The latter have been evaluated
according to a quasi-steady formulation (Fig. 1b). A simplified model has been adopted by neglecting the cable
curvature, the flexural rotations and the aerodynamic couples, which would cause rotations W much smaller
than the static swing j. Moreover, the relative wind velocity V (Fig. 1b) has been evaluated ignoring the twist
velocity _W, which entails velocities at the cross-section boundary smaller than the centerline velocities _w and _v
[3]. In conclusion, the aerodynamic force ba ¼ bd þ bl is a function of the mean wind velocity U, of the twist,
of the translational velocities, and of the static swing, which in turn depends on U; namely
ba ¼ baðW; _v; _w;jðUÞ;UÞ. The force components b2 and b3 are derived by projecting the force ba on the
reference axes, ā2 and ā3, respectively, and expanding for small W; _v and _w, up to cubic terms. Moreover, the
steady part of ba is considered to evaluate, through equilibrium conditions, the static swing j and the stress T̄

(see Appendix A).
It is worth noticing that, when Eqs. (1) are linearized and damping and aerodynamic forces are neglected

(linear Hamiltonian system), two classes of motion are found, namely in-plane (no torsion) modes and out-of-
plane plus torsion modes. Therefore, no purely torsional modes exist and torsion is only coupled with out-of-
plane displacements. This is due to the small (but finite) curvature of the cable. Indeed, when a twist moment
arises, an out-of-plane bending moment is triggered for equilibrium reasons, as it appears from Eq. (1)3. In
contrast, an in-plane bending moment is equilibrated by shear forces only, but both these effects are of a
higher order with respect to the prestress, so that they do not appear in Eqs. (1)1,2. Of course, when
nonlinearities are accounted for, in-plane and out-of-plane (plus torsion) modes also couple among them.



ARTICLE IN PRESS
A. Luongo et al. / Journal of Sound and Vibration 315 (2008) 375–393378
3. Analytical and numerical approaches

The integro-differential equations (1) are solved here by both numerical and analytical approaches.
Different types of analyses are performed, by using the finite-difference and the Galerkin methods, the latter in
conjunction with a numerical integration or a perturbation (Multiple Scale) solution. The aim of the analysis is
to investigate, on the one hand, the ability of a suitably selected small-dimensional system to capture the
essential dynamics of the large-dimensional system and, on the other, the efficiency of an approximate
analytical approach in describing the complex bifurcation scenario, when compared with a purely numerical
approach.
3.1. Finite-difference discretization

The finite-difference method is applied to perform a spatial discretization of Eqs. (1). Constant-spacing
ðnþ 1Þ nodes are considered, at the abscissas si ¼ iD ði ¼ 0; 1; . . . ; nÞ, with D :¼ ‘=n the length of the sub-
intervals (Fig. 2).

The translational displacements viðtÞ :¼ vðsi; tÞ and wiðtÞ :¼wðsi; tÞ and the twist angles WiðtÞ :¼Wðsi; tÞ at nodes,
functions of the sole time t, are taken as the unknowns of the problem. The central differences are used to
discretize the spatial derivatives inside the domain ði ¼ 1; 2; . . . ; n� 1Þ, whereas the forward and backward
differences are employed to express the mechanical boundary conditions ð1Þ6 at i ¼ 0; n. The integrals
appearing in Eqs. (1) are approximated by the Newton–Cotes formula:Z ‘
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The whole procedure, able to tackle an arbitrary number of nodes over the cable length, has been developed
through the symbolic software Mathematicas [9]. The resultant 3ðnþ 1Þ equations of mixed algebraic-
differential type (3ðn� 1Þ differential and 6 algebraic) are numerically integrated in time by a procedure fitted
for such kinds of systems [10]. In particular, the motion of two selected nodes (s ¼ ‘=4 and s ¼ ‘=2) is recorded
in order to compare it with the results of the other methods illustrated in the following.

The Rayleigh formula is used to introduce the structural damping (see e.g. Ref. [11]). To this end, the
continuous damping coefficients cv and cw in Eqs. (1) are ignored and damping is directly introduced into the
discrete model as Cs :¼ aMþ bK, with M and K the mass and the stiffness matrix, respectively. Since the mass
is non-zero only at the internal nodes i ¼ 1; 2; . . . ; n� 1, stiffness is also considered only at these nodes.
3.2. Galerkin discretization

An alternative (generally low-dimensional) discrete model is derived from Eqs. (1) by using a standard
Galerkin procedure, namely:
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Fig. 2. Spatial discretization in the finite-difference method.
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Here, the in-plane fvj
and out-of-plane ðfWk

;fwk
Þ eigenfunctions, deduced from the associated linearized

Hamiltonian problem, are taken as trial functions. Moreover, qi
jðtÞ, ðj ¼ 1; . . . ;mÞ, and qo

kðtÞ, ðk ¼ 1; . . . ; nÞ are
the unknown amplitudes for the in-plane and out-of-plane modes, respectively. By replacing Eqs. (3) in the
weak form of Eqs. (1), the following nonlinear discretized model is obtained:

€qþ Kq ¼ � C _q�HqþN0½q; q� þN1½q; _q� þN2½_q; _q�

þM0½q; q; q� þM1½q; q; _q� þM2½q; _q; _q� þM3½_q; _q; _q� (4)

where q ¼ ðqi
jðtÞ; q

o
kðtÞÞ is the ðmþ nÞ-vector of the Lagrangian parameters; K;C and H are the stiffness,

damping (structural plus aerodynamic) and circulatory matrices, respectively, which are of block-diagonal
type, because of the symmetric–anti-symmetric character of cable eigenfunctions; and Np ðp ¼ 0; 1; 2Þ and
Mr ðr ¼ 0; 1; 2; 3Þ are bilinear and trilinear operators collecting quadratic and cubic nonlinearities,
respectively, both of mechanical and aerodynamic types. The explicit expressions for the coefficients of
Eq. (4), relevant to a strongly reduced 2 dof system ðm ¼ 2; n ¼ 0Þ, used in the following, are given in
Appendix B. Larger dimensional systems, also employed in the following, are not reported for the sake of
brevity.

A solution to Eqs. (4) has first been obtained through direct numerical integration, by using standard
routines [10]. Stable motions are roughly estimated by starting the integration procedure with generic initial
conditions, and checking the steady-motion amplitude when the transient response is exhausted.

3.3. Multiple Scale method

The Multiple Scale perturbation Method (MSM, see e.g. Ref. [12]) has been applied to the discretized
equations (4). As it is well known, the method furnishes equations that govern the slow flow of the system,
filtering its fast dynamics. As a result, analytical solutions are possibly drawn, their stability is more easily
studied and numerical integrations are more easily performed.

A dimensionless perturbation parameter e51 is introduced, and the vector q is expanded in series as
q ¼ eq1 þ e2q2 þ e3q3 þ � � � :Moreover, it is assumed that the coefficients of the matrices C and H are small of
the same order e, namely C ¼ e ~C and H ¼ e ~H, with Oðk ~CkÞ ¼ Oðk ~HkÞ ¼ 1. Two independent slow time scales,
t1 ¼ et and t2 ¼ e2t, are introduced in addition to the fast scale t0 ¼ t, so that, by the chain rule, d=dt ¼

d0 þ ed1 þ e2d2 þ � � � ; with dk :¼ q=qtk. The perturbation equations, collecting terms with the same power of e,
are of the following type:

e : d2
0q1 þ Kq1 ¼ 0

e2 : d2
0q2 þ Kq2 ¼ � 2d0d1q1 �

~Cd0q1 �
~Hq1 þN0½q1; q1�

þN1½q1; d0q1� þN2½d0q1; d0q1�

e3 : d2
0q3 þ Kq3 ¼ � 2d0d1q2 � d2

1q1 � 2d0d2q1

� ~Cðd0q2 þ d1q1Þ �
~Hq2 þ 2N0½q1; q2�

þN1½q1; d0q2� þN1½q1; d1q1� þN1½q2; d0q1�

þN2½d0q1; d0q2� þN2½d0q2; d0q1�

þN2½d0q1; d1q1� þN2½d1q1; d0q1�

þM0½q1; q1; q1� þM1½q1; q1; d0q1�

þM2½q1; d0q1; d0q1� þM3½d0q1; d0q1; d0q1� (5)

Eq. (5)1 admits the solution:

q1 ¼
Xmþn

l¼1

Alðt1; t2Þule
iol t þ c.c. (6)

where i is the imaginary unit, Al are unknown complex amplitudes depending on the slow time scales, ul are
the eigenvectors, ol the associated frequencies and c.c. denotes the complex conjugate. By substituting Eq. (6)
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into Eq. (5)2, a number of (resonant) terms that would lead to divergent solutions on the t0-scale
(secular terms) arise. In selecting them, all the internal resonances among the frequencies ol must be taken into
account. By zeroing the secular terms, a set of differential equations of the type:

d1Al ¼F1lðA1;A2; . . . ;AmþnÞ l ¼ 1; 2; . . . ;mþ n (7)

follow. Then, by solving for q2 and removing secular terms at the higher order, conditions of similar type
are found:

d2Al ¼F2lðA1;A2; . . . ;AmþnÞ l ¼ 1; 2; . . . ;mþ n (8)

Hence, by recombining Eqs. (7) and (8) to come back to the true time t, and re-absorbing the parameter e,
it follows:

_Al ¼FlðA1;A2; . . . ;AmþnÞ l ¼ 1; 2; . . . ;mþ n (9)

with Fl ¼F1l þF2l . Eqs. (9) are called Amplitude Modulation Equations (AME) and govern the slow
dynamics of the system.

As an example, which will be extensively used in the following, when a discrete system (4) with only two
dof’s is considered ðmþ n ¼ 2Þ, having Hamiltonian frequencies o1 and o2 in 1:1 internal resonance (namely,
o1 ¼ o2 þ es, with s ¼ Oð1Þ a detuning parameter), the AME (9) turn out to be

_A1 ¼ A1 �
1

2
ðca1 þ 2x1o1Þ þ ip1

� �
þ Ā1A

2
2ðp21 þ ip22Þe

�2ist

þ A1A2Ā2ðp31 þ ip32Þ þ A2
1Ā1ðp41 þ ip42Þ

_A2 ¼ A2 �
1

2
ðca2 þ 2x2o2Þ þ ip6

� �
þ A2

1Ā2ðp71 þ ip72Þe
2ist

þ A1Ā1A2ðp61 þ ip62Þ þ A2
2Ā2ðp81 þ ip82Þ (10)

where A1 and A2 are the complex amplitudes of the symmetric and anti-symmetric in plane modes,
respectively, and the coefficients pi ¼ piðUÞ are given in Appendix C.

The AME can be put in real form by adopting polar, cartesian or mixed forms for the complex amplitudes
(see Ref. [13] for a general discussion on algorithmic problems arising with such forms). If the polar
representation is adopted, namely Al ¼

1
2

al expðialÞ, with al the amplitudes and al the phases, the introduction
of phase differences permits to further reduce the system dimension, and to transform it into an autonomous
form. For example, when the procedure is applied to Eqs. (10), by letting c :¼ 2ða1 � a2 � stÞ, the following
Reduced Amplitude Modulation Equations (RAME) are obtained:

_a1 ¼ �
1
2

a1ðca1 þ 2x1o1Þ þ
1
4

a1a
2
2ðp21 cosc� p22 sincþ p31Þ þ

1
4

a3
1p41

_a2 ¼ �
1
2

a2ðca2 þ 2x2o2Þ þ
1
4

a2
1a2ðp71 coscþ p72 sincþ p61Þ þ

1
4

a3
2p81

a1a2
_c ¼ a1a2ð2p5 � 2p1 � 2sÞ þ 1

2
a3
1a2ðp62 � p71 sincþ p72 cosc� p42Þ

� 1
2

a1a3
2ðp32 þ p21 sincþ p22 cosc� p82Þ (11)

The polar form, however, becomes singular when at least one amplitude al vanishes (see, for instance,
Eq. (11)3). Therefore, the equations cannot be put in the standard form _x ¼ fðxÞ. This drawback entails that
the stability of solutions containing some zero amplitudes cannot be studied via the standard Jacobian
eigenvalue analysis, nor can software packages suited for standard form equations be used. To overcome such
difficulties, a mixed polar-cartesian form can be adopted [13]. When this procedure is applied to Eqs. (10), by
letting A1 ¼

1
2
ðu1 þ iv1Þ expðin1Þ and A2 ¼

1
2

a2 expðin2Þ, with n1 ¼ a2 � st and n2 ¼ a2, and performing some
algebraic manipulations, a standard form set of equations in the x :¼ðu1; v1; a2Þ variables, suitable for the study
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of the stability of solutions with a1 ¼ 0, is obtained:

_u1 ¼ u1 �
1
2 ðca1 þ 2x1o1Þ þ

1
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2
2

� �
þ v1 p5 � p1 � sþ 1

4
ðp22 � p32 þ p82Þa
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p41u3
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3
1 þ ðp62 þ p72 � p42Þu
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1v1 þ ðp41 þ 2p71Þu1v
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1

� �
_v1 ¼ u1 p1 � p5 þ sþ 1
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_a2 ¼

1
4

a2 �2ðca2 þ 2x2o2Þ þ p81a2
2 þ ðp61 þ p71Þu

2
1 þ ðp61 � p71Þv

2
1 � 2p72u1v1

� �
(12)

On the contrary, by letting A1 ¼
1
2

a1 expðin1Þ and A2 ¼
1
2
ðu2 þ iv2Þ expðin2Þ, with n1 ¼ a1 and n2 ¼ a2 þ st,

and performing some algebraic manipulations, a second standard form set of equations in the x :¼ða1; u2; v2Þ
variables, suitable for the study of the stability of solutions with a2 ¼ 0, is obtained:

_a1 ¼
1
4

a1 �2ðca1 þ 2x1o1Þ þ p41a2
1 þ ðp21 þ p31Þu

2
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2
2 � 2p22u2v2

� �
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3
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2
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2
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þ v2 �

1
2 ðca2 þ 2x2o2Þ þ

1
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3
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2
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2
2� (13)

The real amplitude-phase modulation equations (11), (12) or (13) can be analytically or numerically studied
to find branches of fixed points (corresponding to limit cycles for the original system) and branches of periodic
solutions (corresponding to quasi-periodic motions for the original system).
4. A sample case study

An extended numerical analysis has been performed on a real sample cable, already analyzed in the linear
range [3], having axial stiffness EA ¼ 29:7� 106 N, torsional stiffness GJ ¼ 159Nm2, bending stiffness
EI ¼ 2100Nm2, diameter D ¼ 0:0281m, length ‘ ’ 267m, sag d ¼ 6:18m and mass per unit length (including
ice accretion) m ¼ 1:80 kg=m.

The cable is close to the first cross-over point; its first natural frequencies under no-wind conditions
are: osi ¼ 2:809 rad/s, oai ¼ 2:799 rad/s, oso ¼ 1:399 rad/s and oao ¼ 2:799 rad/s (s ¼ symmetric, a ¼

anti-symmetric, i ¼ in-plane, o ¼ out-of-plane). Therefore, the first symmetric in-plane mode is involved in
a 1:1 internal resonance with the first anti-symmetric in-plane and out-of-plane modes, and in a 2:1 internal
resonance with the first symmetric out-of-plane mode. The associated eigenfunctions are plotted in Fig. 3.
When the static component of the aerodynamic excitation acts on the cable, only the first symmetric in-plane
frequency and relevant eigenfunction change. These alterations, which have been accounted for in the
numerical analyses are, however, negligible for the case study. As a matter of fact, osi varies in the range
ð2:79; 2:81Þ rad/s when U spans the interval (0,20)m/s.

Assuming a Rayleigh structural damping, the proportionality factors a;b are arranged so that the first four
cable modes have damping ratio coefficients equal to x ¼ 0:44% [14], namely:

a ¼ 2x
oaioso

oai þ oso

¼ 0:0082 s�1

b ¼ 2x
1

oai þ oso

¼ 0:0021 s (14)
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Fig. 3. Eigenfunctions of the Hamiltonian system: (a) in-plane modes; (b) w-component and (c) W-component of the out-of-plane modes.
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Fig. 4. U-shaped conductor: (a) attitude of the cross-section to wind (j positive anticlockwise); (b) drag and lift aerodynamic coefficients.
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With regard to aerodynamic properties, a U-shaped conductor having its maximum ice eccentricity
opposite to the mean wind is considered (Fig. 4a, [14]). Its idealized aerodynamic coefficients are the drag
coefficient cdðgÞ ¼ 1:08334þ 0:735935g2, g being the angle of attack, and the lift clðgÞ ¼ �1:5979gþ 4:77362g3

coefficient, that are assumed to be valid in the range �0:6ogo0:6 rad (Fig. 4b); it is easy to verify that the
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cross-section is more prone to the galloping when the angle g is zero. Therefore, in order to exalt the
nonlinear effects, the cross-section is rotated by ḡ ¼ �5� ¼ �0:0873 rad under no-wind conditions; in this
way it arrives, after the static swing, to the most dangerous attitude just close to the first galloping critical
velocity [5].

4.1. Critical conditions

The conditions of incipient instability are investigated via an eigenvalue analysis carried out on the linear
part of the discrete system (4). The eigenvalues are dependent on the mean wind velocity U that governs the
magnitude of the aerodynamic forces, included in matrices C and H. When U ! 0 the eigenvalues tend to the
Hamiltonian ones, modified by the structural damping, and therefore they have negative real parts. When U

increases and reaches a critical value Uc, one couple of complex conjugate eigenvalues crosses the imaginary
axis and galloping oscillations occur (Hopf bifurcation).

Fig. 5 summarizes the results of this analysis, performed by a Galerkin model accounting for the first four
in-plane and four out-of-plane modes ðm ¼ 4; n ¼ 4Þ. It is seen that only the first two in-plane modes (the first
symmetric and the first anti-symmetric) suffer instability, while the remaining ones are always stable. Critical
conditions thus obtained have been validated using a finite-difference analysis by a Matlabs algorithm [3]; the
solutions carried out by the finite-difference method are practically coincident with those obtained with a
small number of modes. However, the crucial role played by the structural damping modeling should be
noticed, since the third (symmetric) in-plane mode is very close to the instability domain (Fig. 5). Therefore, a
different type of modeling (for instance, damping ratio constant over all the considered modes) would modify
the critical conditions. It is worth noticing that both the critical modes show a first bifurcation point (Zoom A
in Fig. 5), in which the instability phenomenon is triggered, and a second bifurcation point (Zoom B in Fig. 5),
where a re-stabilization of the dynamical system occurs (transient galloping). It has been checked that the re-
entry bifurcation is due to the fact that an inclined equilibrium position of the suspended cable is considered
[15]. Actually, the static swing j causes a continuous alteration of aerodynamic forces, which render the
equilibrium unstable only for particular ranges of wind velocity. This fact is a concomitant cause in the
stability recovery of the cable.

Thus, the instability occurrence is very different from the traditional 1 dof galloping analyses, in which the
contribution of the mean wind force is neglected and the aerodynamic coefficients are assumed to be constant
with velocity, at values more favorable for the occurrence of galloping; in those cases the transient galloping
does not occur.
1st s
1st a
2nd s
2nd a

Fig. 5. Real parts of eigenvalues l of the linearized discrete system, taking into account the first eight modes of the cable (s ¼ symmetric,

a ¼ anti-symmetric, i ¼ in-plane, o ¼ out-of-plane).
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4.2. Nonlinear behavior: numerical analysis

The cable nonlinear behavior has been numerically analyzed. Attention has been focused on the instability
domain in Fig. 5. A finite-difference analysis has first been performed, by discretizing the cable in n ¼ 20
nodes. The relevant stable steady-state solutions have been represented in Fig. 6a in terms of modal
amplitudes, in order to compare the results with the Galerkin model. Amplitudes al have been deduced by the
maximum nodal displacements, after the transient is exhausted, according to the following criteria: the
amplitude of the in-plane symmetric mode has been evaluated as a1 :¼maxt½vð‘=2; tÞ�, the amplitude of the in-
plane anti-symmetric mode as a2 :¼maxt½ðvð‘=4; tÞ � vð3=4‘; tÞÞ=2� and the amplitude of the out-of-plane anti-
symmetric mode as a3 :¼maxt½ðwð‘=4; tÞ � wð3=4‘; tÞÞ=2�. Then the direct numerical integration of Galerkin
discretized equations (4) has been carried out, either with a four degree-of-freedom model (first symmetric
and anti-symmetric, in-plane and out-of-plane modes, m ¼ 2 and n ¼ 2, Fig. 6b) or with a two dof’s model
(the two first in-plane modes, m ¼ 2 and n ¼ 0, namely the only unstables, Fig. 6c).

The finite-difference model (Fig. 6a) and the four dof’s Galerkin model (Fig. 6b) present very similar results
from both qualitative and quantitative points of view. In both the cases, a branch of coupled solutions
(indicated as II), consisting of anti-symmetric in-plane (a2, filled boxes) and out-of-plane (a3, empty boxes)
components, is found; moreover, a branch of mono-modal symmetric in-plane solutions, indicated as IV-a1

(filled circles), significant just for low wind velocities, takes place. Branches II and IV are coexistent and their
Fig. 6. Modal amplitudes drawn from: (a) the finite-difference technique; (b) the direct integration of Galerkin 4 dof’s model; (c) the direct

integration of Galerkin 2 dof’s model (a1 in-plane symmetric amplitude, a2 in-plane anti-symmetric amplitude, a3 out-of-plane anti-

symmetric amplitude).



ARTICLE IN PRESS
A. Luongo et al. / Journal of Sound and Vibration 315 (2008) 375–393 385
occurrence is determined by the choice of the initial conditions. For a mean wind velocity greater than �6m/s,
the symmetric branch ðIV-a1Þ collapses to a very small amplitude, whereas the anti-symmetric one (II)
persists and, for velocities greater than �8m/s, the out-of-plane component ða3Þ significantly increases its
amplitude. On the contrary, the contribution of the out-of-plane symmetric mode always seems negligible,
which is triggered, as seen in Ref. [5], by the symmetric in-plane mode and probably suffers its premature
breakdown.

In order to gain an insight into the interaction between the two most important modes, by insulating them
from the remaining components, the simplest model with two sole in-plane dof has been studied. The
amplitudes of the two modes are reported in Fig. 6c: branch II, now composed of the only in-plane component
(filled boxes), is found; moreover, the coexisting branch IV also takes place describing, in this case, coupled in-
plane solutions of symmetric (IV-a1, filled circles) and anti-symmetric (IV-a2, empty circles) components. The
branch IV shows significant amplitudes not only for low wind velocities (U 2 ½5:5; 7:0�m/s) but also for high
wind velocities (U 2 ½13:0; 14:0�m/s). A certain scattering in the amplitude of the solutions pertaining to
branch IV, not highlighted in the figure, is found and will be clarified in the next Section 4.3. If the existence of
branch II and of the left part of branch IV suggests a good agreement between the three different models, the
right part of the branch IV has been found only in the 2 dof’s model. This is probably due to the fact that the
basin of attraction of the right part of branch IV is very tiny. Therefore, it can be concluded that the reduced 2
dof’s model seems able to reproduce the main behavior of the analyzed case study.

A clearer interpretation of this behavior is difficult to obtain by means of a purely numerical approach;
however, it will be possible with the help of perturbation analysis (Section 4.3).

4.3. Nonlinear behavior: perturbation analysis

To better interpret the previous numerical analyses, the AME (11), (12) or (13), furnished by the MSM,
relevant to the planar 2 dof’s model, have been analyzed.

The fixed points ða1; a2;cÞ of the dynamical system (11) have first been evaluated. The existence of the
following branches is easily proved: branch I (trivial path): a1 ¼ a2 ¼ 0, 8c; branches II (mono-modal
galloping), made of two sub-branches:

IIs : a1 ¼ a1ðUÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðca1 þ 2x1o1Þ

p41

s
; a2 ¼ 0; 8c

IIa : a2 ¼ a2ðUÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðca2 þ 2x2o2Þ

p81

s
; a1 ¼ 0; 8c (15)

Finally, branch III (bi-modal galloping): a1ðUÞa0; a2ðUÞa0;cðUÞa0. This latter branch is also found in an
analytical way, as follows: the steady version of Eqs. (11) is transformed into a system of three linear algebraic
equations in two unknowns a2

1 and a2
2, with coefficients depending on c; by requiring that the determinant of

the matrix bordered by known terms vanishes, the two values of c that lead to a bi-modal solution are drawn
as functions of U. Fig. 7a shows the two branches IIs and IIa, while Figs. 7b,c depict the two sub-branches III
(compared with IIa and called III0 and III00, respectively).

A stability analysis of fixed points has then been performed. The stability of branches III is governed by the
eigenvalues of the Jacobian matrix of the polar form (11) of the RAME, evaluated at the equilibrium. Both the
sub-branches III turn out to be unstable for the sample case study investigated here. The stability analysis of
mono-modal branches IIs and IIa must be, in contrast, carried out on the mixed form (12) or (13) of the AME,
according to the discussion carried out in Section 3.3.

When the stability of the branch IIs is studied, Eqs. (13) are linearized around a1 ¼ a1ðUÞ (Eq. (15)1) and
u2 ¼ v2 ¼ 0. The variational equations thus obtained assume the form

d _a1

d _u2

d_v2

8><
>:

9>=
>; ¼

l1 0

0 Ja

" # da1

du2

dv2

8><
>:

9>=
>; (16)
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Fig. 7. Analytical modal amplitudes by MSM: (a) branches IIs and IIa; (b) the sub-branch III0 and (c) the sub-branch III00.
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The eigenvalue l1 is always negative, meaning that the perturbation in the symmetric mode is decaying to zero.
The eigenvalues l2 and l3 of the 2� 2 block Ja, describing the evolution of the perturbation in the anti-
symmetric mode, must therefore be considered. For all the values of U inside the range of existence of branch
IIs, namely U 2 ½5:445; 13:728�m/s, l2 and l3 are complex-conjugate with a positive real part: it means that the
equilibrium at this branch is everywhere unstable.

On the other hand, when the stability of branch IIa is investigated, system (12) is considered. The variational
equations, based on a2 ¼ a2ðUÞ (Eq. (15)2) and u1 ¼ v1 ¼ 0, appear in the form:

d _u1

d_v1
d _a2

8><
>:

9>=
>; ¼

Js 0

0 l3

" # du1

dv1

da2

8><
>:

9>=
>; (17)

The eigenvalue l3 is negative, meaning that the perturbation in the anti-symmetric mode is decaying.
The eigenvalues l1 and l2 of the 2� 2 block Js are therefore meaningful. It is found that, inside the region
of existence of the branch IIa, namely U 2 ½5:434; 13:738�m/s, these eigenvalues are complex-conjugate
with a negative real part, except for two small regions, U 2 ½5:644; 5:761�m/s and U 2 ½13:617; 13:661�m/s,
where they become real and distinct, and one of them assumes a positive value (see Fig. 8). The qualitative
paths of the eigenvalues for increasing U are also sketched in Figs. 8c and 8d. Therefore, two couples of
bifurcation points are found, ðB01;B

0
2Þ and ðB

0
3;B
0
4Þ, that give rise to two small unstable regions on branch IIa

(Fig. 9).
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Fig. 8. Eigenvalues l1 and l2 for the study of the stability of the branch IIa: (a) real part, (b) imaginary part vs wind velocity (dashed line:

l1, dashed-dotted line: l2); qualitative paths on the complex plane for increasing U: (c) near B01 and B03, (d) near B02 and B04.
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These results are consistent with those obtained by numerical integrations of the RAME (11), after the
transient is exhausted: (a) one never finds a steady solution consisting of a1 different from zero and a2 equal to
zero, meaning instability of the branch IIs; (b) out of the regions bounded by B01 � B02 or by B03 � B04, one finds
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Fig. 9. Stability domains of the analytical branch IIa (continuous line: stable; dashed line: unstable).
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steady solutions consisting of a2 different from zero and a1 equal to zero, meaning stability of branch IIa in
these zones; (c) inside the regions bounded by B01 � B02 or by B03 � B04, one finds only oscillating solutions, with
both a1 and a2 different from zero, generating a limit cycle (Fig. 10): this means instability of branch IIa in
these zones; (d) in the close neighbors of the bifurcation points, the oscillating solutions with both a1 and a2

different from zero are also present in the stable range, coexisting with the branch IIa solution: the occurrence
of oscillating or steady solutions depends on the initial conditions.

In order to show the effects of the amplitude modulations inside the zone B01 � B02, the in-plane deflection of
the cable vðs; tÞ ¼ a1ðtÞfv1

ðsÞ cosðo1tÞ þ a2ðtÞfv2
ðsÞ cosðo2tþ a2Þ is shown in Fig. 11 for different times

t 2 ½t; tþT �, T being the slow-period. Only the solution a2 ¼ 0 (in-phase motion) is displayed, since the other
a2 ¼ p solution (opposite-in phase motion) leads to mirror deflections around the midspan. The quasi-periodic
nature of this class of motion (note the motion of the node) and the exchange of energy among the two
contributing modes are evident.

To better understand the behavior of the system near the zones B01 � B02 and B03 � B04, the software package
AUTO [16] has been used to analyze the AME (12). The results are presented in Fig. 12a,b, the first describing
what happens near the zone B01 � B02 and the second near the zone B03 � B04. In these figures, the branch IIa is
reported as a continuous line, the sub-branch III0 (Fig. 7b) is reported as a dashed line and the sub-branch III00
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Fig. 11. Displacement vðs; tÞ for U ¼ 5:76m/s; t ¼ 59; 300 s; T ¼ 600 s (slow period) and a2 ¼ 0.

Fig. 12. Details of the MSM modal amplitudes as obtained by AUTO: (a) near the first instability zone ; (b) near the second instability

zone.
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(Fig. 7c) is reported as a dashed–dotted line, both distinguishing between the a1 and a2 components. A further
branch of coupled periodic motions in the amplitudes, which is always stable in its domain, is found. It is
called IV and reported as a hatched region bordered by continuous tiny lines; the hatching in the diagrams
points out the difference between the maximum and the minimum amplitude in the a1 and a2 components on
branch IV. It can be noticed that the external bifurcation points (B01 and B04) are the intersections between
branch IIa and the a2 component of the unstable branch III0, while the internal bifurcation points (B02 and B03)
are the intersections between branch IIa and the a2 component of the unstable branch III00. On the other hand,
the bi-modal branch IV arises from the external bifurcation points, retaining its stability for the whole wind-
velocity range between the values of B01 and B02 and the values of B03 and B04. The bi-modal branch IV
disappears when the a2 periodic component touches the a2 component of the unstable branch III00, in a
homoclinic tangency (indicated as HT).
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Fig. 13. Numerical integration of the finite-difference model for U ¼ 5:76m/s: (a) symmetric in-plane displacement in s ¼ ‘=2; (b) anti-
symmetric in-plane displacement in s ¼ ‘=4.
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The existence of unstable, small regions inside branch IIa is also in agreement with the results obtained by
the finite-difference model and it is able to explain the apparent scattering of the numerical results for a mean
wind velocity of around 6m/s (Section 4.2). For values of U corresponding to the instability region of the
branch IIa, nonlinear oscillations with varying amplitude, namely the branch IV, are also found numerically
(Fig. 13). It has been noticed that these solutions exist outside the instability regions too: one can be misled by
the very small variation of the amplitude of the symmetric oscillation and by the small amplitude of the anti-
symmetric oscillation, resembling the occurrence of a fake symmetric stable branch in the range U 2

½5:45;�7:00�m/s (see Fig. 6). Similar results, not reported here for the sake of brevity, have also been found
through numerical direct integration of the Galerkin discrete models.
5. Conclusions and prospects

In this paper the galloping instability of a sagged suspended cable has been tackled using a consistent model
of a curved cable-beam, geometrically nonlinear and able to torque. The nonlinear behavior of the cable has
been studied through three alternative approaches: two numerical, with different types of discretization, and
one analytical, through a perturbation method. Comparisons on a sample case study point out the importance
of an extensive analysis of critical conditions and of the internal resonance conditions, which can lead to
interactions among the modes in the nonlinear field. In particular, the classic galloping mode of the technical
literature (first symmetric in-plane mode) actually becomes unstable for the simultaneous unstabilization of
the anti-symmetric planar mode, in resonance with it.

The three different methods of analysis appear complementary in understanding the results, and highlight a
good concordance among them, from both qualitative and quantitative points of view. The analytical
approach seems particularly important in order to recognize situations of difficult interpretation with the sole
numerical tools (for instance, unstable regions in fixed-point branches, with slight variations in amplitude).
The use of a multimodal approach (like the finite-difference technique) leads to small, quantitative differences
with the Galerkin method if the active modes are properly chosen.

The prospects of this research are many. The development of analytical MSM solutions, taking into account
a higher number (e.g. four) of degrees of freedom, can allow recovery of out-of-plane displacements for
complete comparison with numerical multimodal solutions. The analysis of different aerodynamic coefficients
(i.e. different cable cross-sections) can permit underlining the actual contribution of the dynamic angle of
torsion that produces instead moderate changes in the present case study. Finally, the possibility of analyzing
cables in a larger neighborhood of the first cross-over point is of particular interest, since it can allow
evaluation of the influence of geometric parameters on the multimodal galloping conditions.
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Appendix A. Equilibrium configuration

Let us consider the cable in the equilibrium reference configuration C̄ (see Fig. 1a), in which it is loaded by
its own weight b0 and by the steady-state part baðj;UÞ of the aerodynamic force. Since C̄ is planar (Section 2),
equilibrium requires that the resultant force b̄ðj;UÞ :¼ baðj;UÞ þ b0 lies in the plane of the cable. By making
the force component vanish along the binormal direction, i.e. enforcing b̄ðj;UÞ � ā3 ¼ 0, it follows that

sinj ¼ �
raU2r

2mg
½clðḡ� jÞ sinjþ cdðḡ� jÞ cosj� (18)

where ra is the air density, r a characteristic dimension of the cable cross-section and g the gravity
acceleration. Eq. (18) implicitly defines the nonlinear, non-trivial equilibrium path j ¼ jðUÞ. The
corresponding axial stress in the reference configuration assumes the following expression:

T̄ðj;UÞ ¼
‘2

8d
1
2
rarU2ðclðḡ� jÞ cosj� cdðḡ� jÞ sinjÞ þmg cosj

� �
(19)
Appendix B. Galerkin discretized equations ðm ¼ 2; n ¼ 0Þ

Thee discretized equations obtained via the Galerkin standard approach, taking into account two sole active
in-plane modes ðm ¼ 2; n ¼ 0Þ, assume the following expression:

€q1 þ 2x1o1 _q1 þ o2
1q1 þ ca1 _q1 þ h1q

2
1 þ h2q2

2 þ h3q1q
2
2 þ h4q

3
1

þ d1 _q
2
1 þ d2 _q

2
2 þ d3 _q

3
1 þ d4 _q1 _q

2
2 ¼ 0

€q2 þ 2x2o2 _q2 þ o2
2q2 þ ca2 _q2 þ h5q1q2 þ h6q

2
1q2 þ h7q

3
2

þ d5 _q1 _q2 þ d6 _q
2
1 _q2 þ d7 _q

3
2 ¼ 0 (20)

where q1 and q2 are the in-plane displacement amplitudes of the first symmetric mode and the first anti-
symmetric mode, respectively; x1 and x2 are the structural damping ratios; o1 and o2 are the circular
frequencies, depending on the cable stress via the mean wind velocity U; ca1 and ca2 are the aerodynamic
damping coefficients; hi (i ¼ 1; . . . ; 7) are the nonlinear mechanical terms; and di ði ¼ 1; . . . ; 7Þ are the
nonlinear aerodynamic terms. It should be noted that this reduced system is uncoupled on the linear part, so
that the critical wind velocity Uc is given by the classic Den Hartog’s criterion (namely, Uc makes the total
damping equal to zero). Different from the classic case, however, the aerodynamic coefficients are not
constant in the present treatment, but they vary as a function of the static swing j, which in turn is a function
of the mean wind velocity U. The coefficients in Eqs. (20) are expressed as

ca1 ¼ �
b2_v

m
; h1 ¼ �

EAk̄
2‘

I1I4

mI2
þ

EAk̄
‘

I1I3

mI2
; h2 ¼ �

EAk̄
2‘

I1I5

mI2
,

h3 ¼ �
EA

2‘

I3I5

mI2
; h4 ¼ �

EA

2‘

I3I4

mI2
; d1 ¼ �b2_v2

I6

mI2
,

d2 ¼ �b2_v2
I7

mI2
; d3 ¼ �b2_v3

I8

mI2
; d4 ¼ �3b2 _v3

I9

mI2
,

http://www.disg.uniroma1.it/fendis
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ca2 ¼ �
b2_v

m
; h5 ¼

EAk̄
‘

I1I10

mI11
; h6 ¼ �

EA

2‘

I4I10

mI11
,

h7 ¼ �
EA

2‘

I10I12

mI11
; d5 ¼ �2b2 _v2

I7

mI11
; d6 ¼ �3b2_v3

I9

mI11
,

d7 ¼ �b2_v3
I13

mI11
, (21)

where the dynamic wind–force components are:

b2_v ¼ �
1
2
rarUðcd � cl cosj sinjþ cd sin

2j� c0d sinj cosjþ c0l cos
2jÞ

b2_v2 ¼ �
1

16
rar½4cl cos

3j� cdð9 sinjþ sin 3jÞ þ 8c0d cosj� 4c00d cos
2j sinjþ 4c00l cos

3j�

b2_v3 ¼ �
1

12

rar

U
cos3j½� sinjðc0d � 3cl � 3c00l þ c000d Þ þ cosjðc0l þ 3cd þ 3c00d þ c000l Þ� (22)

ra being the air density, r a characteristic dimension of the cable cross-section (typically the diameter) and cd

and cl the drag and lift aerodynamic coefficients, respectively, which appear up to their third derivatives and
are calculated with regard to the planar equilibrium configuration C̄ (Fig. 1a), that is for an angle of attack g
equal to (�j). Finally, the modal integrals are defined as follows:

I1 ¼

Z ‘

0

fv1
ds; I2 ¼

Z ‘

0

f2
v1
ds; I3 ¼

Z ‘

0

fv1
f00v1 ds,

I4 ¼

Z ‘

0

ðf0v1 Þ
2 ds; I5 ¼

Z ‘

0

ðf0v2Þ
2 ds; I6 ¼

Z ‘

0

f3
v1
ds

I7 ¼

Z ‘

0

f2
v2
fv1

ds; I8 ¼

Z ‘

0

f4
v1
ds; I9 ¼

Z ‘

0

f2
v1
f2

v2
ds,

I10 ¼

Z ‘

0

f00v2fv2
ds; I11 ¼

Z ‘

0

f2
v2
ds; I12 ¼

Z ‘

0

ðf0v2Þ
2 ds,

I13 ¼

Z ‘

0

f4
v2
ds (23)

where fv1
(dependent on U) and fv2

(independent of U) are the modal shapes [17].
Appendix C. Coefficients of the amplitude equations

The coefficients pi appearing in the amplitude equations (10) are:

p1 ¼ �
ðca1 þ 2x1o1Þ

2

8o1
; p21 ¼ �

d4o2
2

2

p22 ¼
L2h1

o1
þ

L6h2

o1
þ

h3

2o1
þ 2d1L2o2 þ d2L6o2 �

d2L6o2
2

o1

p31 ¼ �d4o2
2

p32 ¼
2L4h1

o1
þ

h3

o1
þ d2o2ðL5 � L6Þ þ

d2o2
2 þ h2

o1
ðL5 þ L6Þ

p41 ¼ �
3

2
d3o2

1; p42 ¼
h1

o1
ðL1 þ 2L3Þ þ

3h4

2o1
þ 2d1L1o1

p5 ¼ �
ðca2 þ 2x2o2Þ

8o2
; p61 ¼ �d6o2

1
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p62 ¼
d5o1

2
L5 � L6ð Þ þ

L3h5

o2
þ

h6

o2
þ

h5 þ d5o2
1

2o2
ðL5 þ L6Þ

p71 ¼ �
d6o2

1

2

p72 ¼ d5L1o1 þ
d5L6o1

2
þ

h5

2o2
ðL1 þ L6Þ þ

h6

2o2
�

d5L6o2
1

2o2

p81 ¼ �
3

2
d7o2

2; p82 ¼
L2h5

2o2
þ

L4h5

o2
þ

3h7

2o2
þ d5L2o2 (24)

where the Li coefficients assume the expressions:

L1 ¼
h1 � d1o2

1

3o2
1

; L2 ¼
�h2 þ d2o2

2

o2
1 � 4o2

2

; L3 ¼ �
h1 þ d1o2

1

o2
1

L4 ¼ �
h2 þ d2o2

2

o2
1

; L5 ¼ �
d5o1o2 � h5

o2
1 þ 2o1o2

; L6 ¼
h5 þ d5o1o2

o2
1 � 2o1o2

(25)
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